A Brief History of Computing

Will Leeson

Before We Get Started

- Survey Results!
- About 75\% not in CS/Math
- Avg Tech Literacy: 5.35
- Median Tech Literacy: 5
- Common suggested topics:
- Machine Learning/A.I.
- General Programming/Software
- How does tech work (fundamentally)
- As an aside, y'all seem to have a good sense of humor

Some of my favorite reponses

- "For no nefarious purposes, I would like to understand of hacking works"
- "I'm literally a rookie on IT, then I was "discriminated" by my CS major friends. Here to prove myself."
- "I bought and set up an SSD for a laptop." followed by "I am near tech illiterate."
- Financial Gain:
- "[I] wrote a program to predict crypto currency using machine learning"
- "(Trying to) analyze public company financials using python."

What is a computer?

Definition - Computer

A programmable, usually electronic, device that can store, retrieve, and process data

Origin

The first use of the term comes from human "computers".

Pre-20th Century Computing

- Recording information

- Processing Information
- Abacus
- Slide Rule

Mechanical Computers

- Charles Babbage (1791-1871)
- The "Father of the Computer"
- Theorized a machine able to do generic computations
- Programmed using punch cards
- Involved cranks and moving parts
- Analog Computers
- Used for scientific purposes
- Had a single intended purpose
- Solving calculus problems
- Predicting the tides

Analog vs Digital Signals

- Analog - A continuous signal
- Very precise
- Can easily be affected by noise
- Unique
- Digital - A discrete signal
- Precision limited by device
- Less prone to noise
- Limited possible signals

Analog vs Digital Signals

Analog vs Digital Signals

Analog vs Digital Signals

Analog vs Digital Signals

Binary

Definition - Binary

A number system based only on the numerals 0 and 1

Origin - Bit
A combination of the words "Binary" and "Digit".

Counting in Binary

- We use Decimal (Base-10)
- Computers use Binary (Base-2)
- The base determines the "place value"
- $2,153=2 \times 10^{3}+1 \times 10^{2}+5 \times 10^{1}+3 \times 10^{0}$
- $10110=1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$

Converting from Binary to Decimal

How do we go from 10110111 to $183 ?$

Place	128	64	32	16	8	4	2	1
Value	1	0	1	1	0	1	1	1

$128+32+16+4+2+1=160+20+3=183$

Converting from Decimal to Binary

[^0]| $156 / 2=78$ Rem 0 | 0 | 1 |
| :--- | :--- | :--- |
| $78 / 2=39$ Rem 0 | 0 | 0 |
| $39 / 2=19$ Rem 1 | 1 | 0 |
| $19 / 2=9$ Rem 1 | 1 | 1 |
| $9 / 2=4$ Rem 1 | 1 | 1 |
| $4 / 2=2$ Rem 0 | 0 | 1 |
| $2 / 2=1$ Rem 0 | 0 | 0 |
| $1 / 2=0$ Rem 1 | 1 | 0 |

Why do Computers use Binary?

- Simplest Digital Signal
- Transistors
- Noise is not a factor
- Logical Theory
- 0 = False, 1 = True
- The underpinning of most computer science
- Programs are a set of instructions following logic

■ If time is 8AM: sound alarm

Alan Turing

- Seminal figure in Computer Science
- Worked as a codebreaker
- Crucial to breaking German codes
- Father of Artificial Intelligence
- Turing Test

Decoding Challenge!

Turing Machine

- Simple Machine
- Components
- A "memory" tape
- A "head"
- A finite set of rules
- Defined the limits and potential of computers
- Basis of all modern computers

Yay! Now we have modern computers

ENIAC

- The first programmable, electronic, general-purpose digital computer
- Large machine
- 30 tons
- $1,800 \mathrm{sq} \mathrm{ft}$
- 18,000 Vacuum tubes
- 1,000 times faster than existing machines
- Purpose: Calculate rocket trajectories
- Operated mostly by women
- Not credited at the time

Programming the computer

- We need to tell the computer what to do
- Speaking directly to a computer is hard
- We would like a translator
- Compiler
- Takes our instructions
- Simplifies when possible

- Translates them to Computer speak

Programming Language

- A common language between human and compiler
- Requirements:
- Simple

```
def say_hello(name)
    print("Hello, " + name + ". Nice to meet you")
def main():
    name = input("Please tell me your name: ")
    say_hello(name)
main()
```

- Expressive
- Non-ambiguous
- Early Languages
- FORTRAN, Lisp, BASIC
- Modern Languages
- C/C++, Python, Java, Javascript

Personal Computers

- The ENIAC was too big
- A requirement of its components
- MOSFET
- Metal-oxide-silicon field effect transistor
- Can be tiny and mass produced
- Intel 4004
- Released in 1971 for $\$ 60$ ($\sim \$ 450$ today)

- First single-chip microprocessor (The CPU)

Personal Computers cont.

- Computer parts continued to become affordable and smaller
- Moore's Law
- The number of transistors on a CPU doubles every two years
- Computation power continues to grow

Some Important People

Grace Hopper

- Earned a Ph.D. in Mathematics from Yale in 1934
- Joined Navy Reserves in WWII
- Created first "compiler"
- Highly influential in first programming languages
- Fun Facts
- Helped coin the term computer "bug"
- Nicknamed "Grandma Cobol"

Dennis Ritchie and Ken Thompson

- Researchers at Bell Labs
- Created the Unix operating system
- Basis of many other operating systems
- MacOS, Linux, Android, etc.
- Created the C programming language and its predecessor
- One of the (still) most used and influential programming languages
- Influenced Go (Google's language), Swift (Apple's language), C++, Rust, Python, etc.

Donald Knuth

- Earned a PhD in mathematics from Cal Tech in 1963
- Crucial in the understanding of algorithmic complexity
- Prolific Writer on various subjects
- Computer Programming
- Mathematics
- Religion and Computer Science
- If you find an error in his texts, he awards you 256 cents (1 hexadecimal dollar)

[^0]: Flip it!

