Boolean Logic

Will Leeson

What comes to mind when you think of "Logic"?

Boolean Logic

- Developed by George Boole in 1854
- A systematic approach to logic
- Two Values
 - True (1)
 - False (0)
- Variables
- Three "Basic" operators
- Several "Secondary" Operators

Х	Y	ΧΦΥ
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Some Terminology

• Constant

- A value that does not change
- \circ $\,$ In algebra: 1, -30, 2.541, π
- In boolean logic: True, False

• Variable

- A value that can span many values
- \circ Usually represented by a single letter (x, y, z, etc.)
- Same for both algebra and boolean logic

Some Terminology

• Operator

- A symbol representing a set function
- Unary and Binary operators
- \circ In algebra: +, -, /, ^, etc.
- $\circ \quad \text{ In boolean logic: } \Lambda, \, V, \leftrightarrow, \neg$
- Operand
 - The values an operator acts on
 - Algebra: **1** + **3**, **27** / **x**, -**3**, etc.
 - Boolean logic: **True** \land **False**, $X \leftrightarrow Y$, $\neg X$
- Expression
 - A combination of operators and operands
 - Follows rules according to the mathematical language

Conjunction

- Binary Operator
- In words and
- In symbols Λ
- Only true is both expressions are true
 - "Did you go to dinner **and** a movie."
 - "If you are happy **and** you know it, clap your hands"

Х	Y	ХЛҮ
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction

- Binary Operator
- In words or
- In symbols V
- True when either expression is true
 - "My friends must enjoy listening to Folk
 or R&B music"
 - "Are there shellfish **or** cheese in this dish? I'm deathly allergic."

Х	Y	XVY
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Negation

- Unary Operator
- In words not
- In symbols ¬
- True when the expression is False
 - "I am **not** 30 years old."
 - "They are **not** a fan of the New York Jets."

Х	٦X
Т	F
F	Т

Conditional

- Binary Operator
- In words If X then Y
- In symbols →
- True unless X is true and Y is false
 - "If I've been to Pluto, then I've been to Mars."
 - "If I've seen a cute dog, then I've said out loud 'Ooo, cute dog'"

Х	Y	$X \rightarrow Y$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Biconditional

- Binary Operator
- In words X if and only if Y
- In symbols \leftrightarrow
- True if X equals Y
 - "Johnny can have dessert if and only if I did all of my homework"
 - "I will go to the concert if and only if I know the band that is playing."

Х	Y	$X \leftrightarrow Y$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Exclusive Disjunction

- Binary Operator
- In words (exclusive) or
- In symbols ⊕
- True if either X or Y is true, not both
 - "Would you like the chicken **or** the fish?"
 - "I need to take my pill or the lactose in the pizza will be a problem."

х	Y	X ⊕ Y
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Order of operation

- In algebra, PEMDAS
 - Parentheses
 - Exponent
 - Multiplication/Division
 - Addition/Subtraction
- In boolean logic, IPAOEBC
 - Inverse (Not)/Parentheses
 - \circ And
 - Or/EXOR
 - Biconditional/Conditional

- A way to structure Boolean Formula
 - Break down the formula into "atoms"
 - Define the atoms using True and False
 - Combine atoms using order of operations
 - Repeat until none are left

Х	Y	$X \rightarrow Y$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

 $(X \lor Y) \land \neg X$

Х	Y	(X ∨ Y)	٦X	(X∨Y) ∧ ¬X
Т	Т	Т	F	F
Т	F	Т	F	F
F	Т	Т	Т	Т
F	F	F	Т	F

 $(A \Rightarrow B) \lor (B \Rightarrow A)$

А	В	$(A \to B)$	$(B\toA)$	$(A \to B) \ V \ (B \to A)$
Т	Т	Т	Т	Т
т	F	F	Т	Т
F	Т	т	F	Т
F	F	Т	Т	Т

Tautology!

$(X \lor Y) \land \neg(X \lor Y)$

х	Y	(X ∨ Y)	¬(X ∨ Y)	$(X \lor Y) \land \neg (X \lor Y)$
Т	Т	Т	F	F
т	F	Т	F	F
F	Т	Т	F	F
F	F	F	Т	F

Contradiction!

 $X \land Y \leftrightarrow Z \lor Y$

Х	Y	Z	$X \land Y$	ΖVΥ	$X \land Y \leftrightarrow Z \lor Y$
Т	т	т	т	т	Т
Т	т	F	т	Т	Т
Т	F	Т	F	Т	F
Т	F	F	F	F	Т
F	т	т	F	т	F
F	т	F	F	Т	F
F	F	Т	F	т	F
F	F	F	F	F	Т

Logical Equivalence

Х	Y	$X \to Y$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Ξ

Х	Y	٦X	$\neg X \lor Y$
Т	Т	F	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Logical Equivalence

Х	Y	$X \leftrightarrow Y$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Ξ

Х	Y	$(X \land Y) \lor (\neg X \land \neg Y)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence

Х	Y	X⊕Y
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

Ξ

Х	Y	$(X \lor Y) \land \neg(X \land Y)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

So what does this have to do with Computers?

Computers are machines

- They do not think for themselves
- They follow a set of instructions
 - Can be informed by external stimulus
 - Can be informed by "randomness"
- Programs rarely don't make "decisions"
 - If they clicked button X, do Y
 - \circ If X and Y or Z, do A
- When writing programs, you will use boolean logic

Computers are machines

- Computers are wires with electricity running through them
- They don't know what X+Y means
 - We must translate X+Y to electricity
 - This is where Boolean Algebra comes in
- Different "gates" enact boolean operations
- Circuits are combinations of gates serving different purposes

Gate diagrams

Addition Circuit

In decimal: 1 + 0 = 1

In binary: 1 + 0 = 1

In logic: $S = 1 \oplus 0 = 1$ $C = 1 \land 0 = 0$

In decimal: 1 + 1 = 2In binary: 1 + 1 = 10In logic: $S = 1 \oplus 1 = 0$ $C = 1 \land 1 = 1$

And we can go on from there...

