Boolean Logic

Will Leeson

What comes to mind when you think of "Logic"?

Boolean Logic

- Developed by George Boole in 1854
- A systematic approach to logic
- Two Values
- True (1)
- False (0)
- Variables
- Three "Basic" operators
- Several "Secondary" Operators

X	Y	$X \Phi Y$
T	T	T
T	F	F
F	T	F
F	F	T

Some Terminology

- Constant
- A value that does not change
- In algebra: 1, -30, 2.541, п
- In boolean logic: True, False
- Variable
- A value that can span many values
- Usually represented by a single letter (x, y, z, etc.)
- Same for both algebra and boolean logic

Some Terminology

- Operator
- A symbol representing a set function
- Unary and Binary operators
- In algebra:,,$+- /, \wedge$, etc.
- In boolean logic: $\wedge, \vee, \leftrightarrow, \neg$
- Operand
- The values an operator acts on
- Algebra: 1+3, 27 / x, -3, etc.
- Boolean logic: True \wedge False, $\mathbf{X} \leftrightarrow \mathbf{Y}, \neg \mathbf{X}$
- Expression
- A combination of operators and operands
- Follows rules according to the mathematical language

Conjunction

- Binary Operator
- In words - and
- In symbols - \wedge
- Only true is both expressions are true
- "Did you go to dinner and a movie."
- "If you are happy and you know it, clap your hands"

X	Y	$X \wedge Y$
T	T	T
T	F	F
F	T	F
F	F	F

Disjunction

- Binary Operator
- In words - or
- In symbols - V
- True when either expression is true
- "My friends must enjoy listening to Folk or R\&B music"
- "Are there shellfish or cheese in this dish? l'm deathly allergic."

X	Y	$X \vee Y$
T	T	T
T	F	T
F	T	T
F	F	F

Negation

- Unary Operator
- In words - not
- In symbols - ᄀ
- True when the expression is False
- "I am not 30 years old."
- "They are not a fan of the New York Jets."

Conditional

- Binary Operator
- In words - If X then Y
- In symbols - \rightarrow
- True unless X is true and Y is false
- "If l've been to Pluto, then l've been to Mars."
- "If l've seen a cute dog, then l've said out loud 'Ooo, cute dog'"

X	Y	$X \rightarrow Y$
T	T	T
T	F	F
F	T	T
F	F	T

Biconditional

- Binary Operator
- In words - X if and only if Y
- In symbols - \leftrightarrow
- True if X equals Y
- "Johnny can have dessert if and only if I did all of my homework"
- "I will go to the concert if and only if I know the band that is playing."

X	Y	$X \leftrightarrow Y$
T	T	T
T	F	F
F	T	F
F	F	T

Exclusive Disjunction

- Binary Operator
- In words - (exclusive) or
- In symbols - \oplus
- True if either X or Y is true, not both
- "Would you like the chicken or the fish?"
- "I need to take my pill or the lactose in the pizza will be a problem."

X	Y	$X \oplus Y$
T	T	F
T	F	T
F	T	T
F	F	F

Order of operation

- In algebra, PEMDAS
- Parentheses
- Exponent
- Multiplication/Division
- Addition/Subtraction
- In boolean logic, IPAOEBC
- Inverse (Not)/Parentheses
- And
- Or/EXOR
- Biconditional/Conditional

Truth Tables

- A way to structure Boolean Formula
- Break down the formula into "atoms"
- Define the atoms using True and False
- Combine atoms using order of operations
- Repeat until none are left

X	Y	$X \rightarrow Y$
T	T	T
T	F	F
F	T	T
F	F	T

Truth Tables

$$
(X \vee Y) \wedge \neg X
$$

X	Y	$(X \vee Y)$	$\neg X$	$(X \vee Y) \wedge \neg X$
T	T	T	F	F
T	F	T	F	
F	T	T	T	T
F	F	F	T	F

Truth Tables

$$
(A \rightarrow B) \vee(B \rightarrow A)
$$

A	B	$(A \rightarrow B)$	$(B \rightarrow A)$	$(A \rightarrow B) \vee(B \rightarrow A)$
T	T	T	T	T
T	F	F	T	
F	T	T	F	T
F	T	T	T	T

Tautology!

Truth Tables

$$
(X \vee Y) \wedge \neg(X \vee Y)
$$

X	Y	$(X \vee Y)$	$\neg(X \vee Y)$	$(X \vee Y) \wedge \neg(X \vee Y)$
T	T	T	F	F
T	F	T	F	
F	T	T	F	F
F	F	F	T	

Contradiction!

Truth Tables

$$
X \wedge Y \leftrightarrow Z \vee Y
$$

X	Y	Z	$X \wedge Y$	Z V Y	$X \wedge Y \leftrightarrow Z \vee Y$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	T	F
T	F	F	F	F	T
F	T	T	F	T	F
F	T	F	F	T	F
F	F	T	F	T	F
F	F	F	F	F	T

Logical Equivalence

X	Y	$X \rightarrow Y$
T	T	T
T	F	F
F	T	T
F	F	T

X	Y	$\neg \mathrm{X}$	$\neg \mathrm{X} \vee \mathrm{Y}$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

Logical Equivalence

X	Y	$X \leftrightarrow Y$
T	T	T
T	F	F
F	T	F
F	F	T

X	Y	$(X \wedge Y) \vee(\neg X \wedge$
	TY)	
T	T	T
T	F	F
F	T	F
F	F	T

Logical Equivalence

X	Y	$X \oplus Y$
T	T	F
T	F	T
F	T	T
F	F	F

X	Y	$(X \vee Y) \wedge \neg(X \wedge Y)$
T	T	T
T	F	F
F	T	F
F	F	T

So what does this have to do with Computers?

Computers are machines

- They do not think for themselves
- They follow a set of instructions
- Can be informed by external stimulus
- Can be informed by "randomness"
- Programs rarely don’t make "decisions"
- If they clicked button X , do Y
- If X and Y or Z, do A
- When writing programs, you will use boolean logic

Computers are machines

- Computers are wires with electricity running through them
- They don't know what $X+Y$ means
- We must translate $X+Y$ to electricity
- This is where Boolean Algebra comes in
- Different "gates" enact boolean operations
- Circuits are combinations of gates serving different purposes

Gate diagrams

Addition Circuit

In decimal: $1+0=1$
In binary: $1+0=1$
In logic: $S=1 \oplus 0=1$
$C=1 \wedge 0=0$

In decimal: 1+1=2
In binary: $1+1=10$
In logic: $S=1 \oplus 1=0$
$C=1 \wedge 1=1$

And we can go on from there...

